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A method for reducing a problem in the theory of elasticity to a Hilbert boundaxy-value problem, which has been generalized 
by Vekua [1], is extendc~l to a mixed axially symmetric problem for a tnmcated sphere, with a rigidly embedded spherical surface. 
The normal stresses at the cut are specified. The system of functional equations of this problem is transformed to a system of 
two singular equations which requires regularization. A contact problem concerning the impression of a punch which is circular 
in plan into the cut of the truncated sphere is then considered. The integral equation for this problem is reduced, using the method 
of paired equations, to a Fredholm integral equation of the second kind. © 1997 Elsevier Science Ltd. All rights reserved. 

The contact problem of the torsion of an elastic truncated sphere with a damped spherical surface by 
a rigid punch which is circular in plan view and located in the cut of the sphere has been studied 
previously [2-4]. An integral Mehler-Fock transformation on the real axis was used to derive the integral 
equation of this problem. Below, an integral Mehler-Fock transformation in the complex plane is used 
as in the case of the second fundamental boundary-value problem in the axially symmetric theory of 
elasticity for a spherical lens [1]. A truncated sphere is a special case of this. 

1. We will consider the axially symmetric problem for an elastic truncated sphere with an embedded 
spherical surface. This truncated sphere is acted upon by a normal point force on its cut. We use the 
toroidal coordinates ~, q (Fig. 1) which are associated with the cylindrical coordinates r, z, which have 
been divided by the radius of the section R., by the relations 

sh~ sinrl (1.1) r =  Z = 
ch ~ + cos 11 ' ch ~ + cos 11 

We write the tm,tmdary conditions for the problem in the form (G is the shear modulus) 

o : / ( 2 G ) = - 5 ( ~ - x ) ,  x ~ = 0  (n =0 )  (1.2) 

u, .=u:=0  (11=a) 

We express the strains and stresses from (1.2) in terms of two harmonic Boussinesq functions ~n (n 
= I, 2) using the Ibrmulae in [5] (v is Poisson's ratio) 

u, DO t DO 2 u~ =DO I _ z  D~2 
R , ' -  Dr z Dr ' R, Dz Dz + ¢ 3 0 2  (E 3 = 3 - 4 v )  

'~,-- -- D2¢~1 D202 D¢I) 2 
" - -z~-W-~ +El = I -2V) (1.3) 2G DrDz oroz - ~ r  (El 

0:. D2¢~)1 D2¢~)2 DO 2 
2G = ~3z----~--Z~z2 +E2-~z'z (E2 = 2 ( I - v ) )  
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Fig. 1. 

and we represent the Boussinesq functions themselves as Mehler -Fock  integrals in the complex form 
[1] (c > 0) 

4 c+i~ 
On(~,'q) = ch~+cos r l  ~ Q~t_½(ch~)[An(It)cosIxrl+Bn(It)sinwq]dIx(n=l,2) (1.4) 

7Cl c-i~ 

A,, (-Ix) : - A  n (Ix), 

By using the formulae 

Bn(-Ix) : Bn(Ix) 

O sh~sin r l ~  + (1 + ch ~ c o s r l ) ~  
Or 

O - (1 + c h ~ c o s q )  - sh{sin rl~-~ 
(1.5) 

the differential relation for spherical functions 

[Q~_~ (ch ~)]' = Q l  (ch ~) (1.6) 

a number  of  other  equations [6] relating spherical functions with different lower an upper  indices, the 
expansion of  a &ftmction in a Mehle r -Fock  integral 

C+i~ 
8 ( ~ - x )  = l s h x  ~ Ixe~t_~(chx)Q,_~(ch~)dix (1.7) 

r~i c-i~ 

and shifting the integration contour in the integrals (1.4) into the band of  regularity of  the functions 
A,,(IX), Bn(IX), we change from (1.2)-(1.4) to a system of  four  functional equations in three straight lines 
in the plane of  the complex variable Ix in the unknown fimctionsAn(Ix), Bn(Ix) (n = 1, 2) 

e 2 B 2 ( I X ) - f ( A I ) / 2 = W ( B ) ,  elA2(B)+ f ( B I ) I 2 = O  

cos Ixo~[g(A I ) cos ~ - g(A 2 )sin a]  + sin Ixo~[g(B I )cos a - g(B 2 )sin ¢c] + 

+(B - 1) -I cos(Ix - I)~{E2B 2 (It - 1)-  (~)[A I (It - 1)+ A I (I.t)]} + 

+(IX+ i) -I cos(ix + 1)o~{e2B2(IX + 1) + (~)[Ai (it) + A~ (IX + 1)]}- 

-(Ix - 1) -1 sin(it - 1)a{e~A2 (IX- 1) + (~)[B1 (IX - 1 ) +  Bi (it)] } - 

-(IX +1) -l sin (IX + 1)¢z{el A 2 (Ix + 1)-  (~)[B I (Ix) + B I (Ix + 1)]} = 

= (Ix - 1) - I  W ( I x  - 1)cos (Ix - l ) ( x  + (Ix + 1)  - l  W ( i t  + I)cos (Ix + l)Ct 
(1.8) E2 [2A2 (it) cos a cos IXtX + (It - J6)(Ix - 1) -1,42 (I t - 1) cos (IX - DOt + 

+(Ix + ~)(Ix + 1) -I A2 (It + l) cos (Ix + 1)IX] + E 1 [2B 2 (Ix) COS O~ sin Ixa + 
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+(It - J/2)(it - 1) -1 B2 (it - 1)sin (it - 1)(x + (it + ~)(it  + 1) -I B 2 (it ÷ 1) sin (it + 1)(x] + 
+ f ( A2 ) sin ct sin it(x - f ( Bz ) sin (x cos itct = - 2  W (it ) cos o~ sin itct - 

-( i t  - ]/2)(it - 1) -I W(it - 1) sin (it - 1)o~ - (It + ~)( i t  + I) -I W(it + 1) sin (I-/+ 1)(x 

f ( F )  = (Ix - 1)F(it - 1) ÷ 2itF(it) + (it + ~)F( i t  + 1) 

g ( F )  = F(i t  - 1) + 2F(it) + F(it + 1) 

W(it) =: - sh  xP~t_~ (ch x) / (ch x + 1) ~ 

In the deriving (1.8), the boundary condition for x= has been integrated with respect to r (for 
11 = 0) and, in the boundary condition for Oz, the first derivative with respect to z has been eliminated 
using the last relation of (1.6). The third and fourth equations of (1.8) have been written taking account 
of the first two equations. 

We now introduce the new analytic functionsA*(it), B*(it) using the formulae 

A* (It) = It[A l (It - ~ )  + A I (It + ~)]  (1.9) 

B*(it) = It[B~ ( i t -~A)+ & (it + JA)] 

The first two equations of (1.8) can then be represented in the form 

A*(it - ~ )  + A*(it + ~ )  = 2[~2B2 ( i t ) -  W(it)] 

B*(it - ~ )  + B* (it + ~ )  = -2ejA2 (it) 
(1.10) 

By virtue of the evenness of the functionA*(it) and the oddness of the function B*(it) (see (1.4)), 
the functional equations (1.10) in these functions are solved by reducing them (by putting It = ix, "c 

, , ~1 R) in (1.10)) to Dh'ichlet problems for the functions ReA (it), I m B  (it) in the band l Re It I "-~ /2. The 
solution of these problems is found using a Fourier integral transformation. The ftmctions lmA*(it) ,  
Re B*(it) are then recovered using the Sehwarz formulae [7]. After Eqs (1.10) have been solved, the 
functionsAl(it), Bl(it), which can therefore be eliminated from system (1.8), are determined in a similar 
manner from relations (1.9). 

We now consider system (1.8), having eliminated the functions Al(it), Bl(it) from it when It = ix, 
x e R. Using the Sehwarz formula, we now reduce the Hilbert boundary-value problem which arises 
here and has been extended Vekua to a system of two singular integral equations in the new functions 
Cpl(X), q)2(x) which are related to the functionsA2(it), B2(it) by the equations 

(Pl (x) = Im A 2 (I + ix) + th rex o)(x) 

h02 (x) = Re B 2 (1 + ix) - t0(x), to(x) = Re W(1 + i¢) 
(1.11) 

(1.12) 

After some reduction, this system can be written in the matrix form (0 ~< x < **) 

A(x)q)(x)+ l.}_~ K(x,  t)(p(x) d(chm) = f(x)  
~i 0 ch ~t - ch ~x 

whereA(x) = (a,~.,(x)), K(x,  t) = i(knm(X, t ) )  are matrices and 9(x) = (¢pn(x)),f(x) = (fn(x)) (n, m = 1, 
2) are column vectors. We omit the expressions for the elements of these matrices in view of thek  length. 

System (1.12) has an exact solution when (x = n, v = 1/2 when 91(x) = ~ (x )  - 0. When ot = x, v # 
1/2, the structure of the exact solution of the problem [8, Chapter 12, p. 76] is somewhat more complex. 
An analysis of this structure and the behaviour of the functions f l (x ) ,  f2(x) on the right-hand side of 
system (1.12) enables one, when x ---> oo, to assert that the substitution (1.11) separates out the principal 
parts of the functions ImA2(1 + ix) and Re B2(1 + ix) when x --) -0. 

An investigation of the normality of the system which is characteristic of (1.12), that is, the check 
that condition [9] 

d e t S ± ( x ) = d e t [ A ( x ) + B ( x ) ] # O  ( 0 ~  < x < * o )  (1.13) 

is satisfied, where B(x )  = i(bnm(X) ) (n, m = 1, 2), and bnm(X) = knm(X, x) and S+. (X) are the  basic matrices, 
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shows that the inequality v # cos 2 ct must be satisfied when [~4, 3rd4]. When a = 1m/8 and n = 0, 1, 
7, 8, condition (1.14) is satisfied for any value of  v; when n = 4, it is satisfied in the interval v > 0.092; 
when n = 2 and n = 6, then v # 1/2 and, when n = 3, 5 and v = 0.3, condition (1.13) is also satisfied. 

Using the methods described in [9, 10], we regularize the system of singular equations (1.12), reducing 
this system to a Fredholm matrix integral equation of the second kind 

[A. (x)A(x)- B. (x)B(x)]~0(x)+/7 A.(x)[K(x, t ) ,  B(x)] + B, (x)[A(t)- A(x)] cp(x)d(ch ~ t ) -  
0 ch xt - ch rex 

I ~ K ( t  o ,  t )  

0 o (chm 0 - ch ~t)(ch xt o - ch ~x) 
~p(t)d(ch xt 0)d(ch rot) = 

1 ~. f ( t )  = A,(x)f(x)+=-B,(x)j  d(ch nt) (1.14) 
o c h ~ t -  ch ~x 

A, (x) = (~)[S~.l (X) + S_-I (z)], B, (z) = (~)[S~.t (z) - S_-I (z)] 

The investigation of problem (1.1) is completed by solving Eq. (1.14) which can be carried out 
numerically. 

We also note that the numerical solution of the system of singular equations (1.12) can also be obtained 
without its regularization, by using well-known quadrature formulae for singular integrals [11, 12]. 

2. We will now study the axially symmetric contact problem of the impression by a force P into the 
cut of  a truncated sphere with an embedded spherical surface of  a rigid punch which is circular in plan 
view. The shape of  the base of  this punch is described by the function g.(~). Suppose that b is the radius 
of  the circular domain of  contact with respect to the coordinate ~. It is necessary to determine the 
distribution function Of th~ normal contact pressures under the punch oz(~, 0) = -¥(~)  (0 ~< ~ ~< b) 
and to find the value of P for a specified function g.(~), a specified value of  b and the punch 8 settling 
divided by R.. 

After the boundary-value problem (1.1) has been solved, the normal displacement in the cut of  the 
sphere is found using the formula 

u:(~, 0)=  e2 ~ - + - / 7  thnxlm A2(ix)Pi~_~(ch~)dx (2.1) 
0 

Knowing the function uz(~, 0) of  the form of (2.1), taking account of the Schwarz formula 

Im A 2 (ix) = 2 sh J I m  A 2 (1 + it)L(t, z)dt 
2 0  

L(t, x) = sh (m / 2)(ch nt + ch nx) -a 

(2.2) 

and the first formula of (1.11), which is a consequence of the Schwarz formula (2.2) for the integral 

2sh "Ot, Ro e,, x),. = x'l:Pi.~_y~ (ch x) (2.3) 

the integral equation of the contact problem under consideration in the functions ¥.(~) = ¥(~)/[0(ch 
+ 1)3/2](0 = G / ( 1  - v)) can be written in the form 

b 
I V.fx)sh x ax{'~ [(I - g(x))g,_:6 (ch x) + 
o o 

Here, 0 ~ { ~ b and we have introduced the notation 

g(x) = 1 / ch2 gx, g~(t ,x)shx=%(t)(chx+l)  ~ 

(2.4) 

(2.5) 
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From mechanical considerations, the kernel of the integral equation (2.4) is symmetric. Interchanging 
the variables x and ~ in this kernel we write the paired integral equation, which is equivalent to Eq. 
(2.4), in the form 

7o C(x){[I'- g(z)]P/x-~(ch ~) + 2th rc1:sh"~i q~;(t,~)L(t, "c)dt}d'c= f,(~) (0~  < ~ ~< b) (2.6) 

where 

7 C(x)xthTtxPix-~(ch~)dx=O (b<~<~) 
o 

b 

C(x) = S W, (x) sh xP~_ l~ (ch x)dx (2.7) 
0 

On finding the fimetion C(x) in the form of the integral 

b 
C(x) = I q~.(x)cosxx dx (2.8) 

0 

and using a well-known technique [13, p. 101] and the value of the integral (the Schwarz formula again) 

l t~*?  
2sh "'" J L(t, x)thxtcostx dt = 

2 0  
th ~x cos xx 

chx 
(2.9) 

we reduce the paired equation (2.6) to a Fredholm integral equation of the second kind in the function 
,.(x) 

~ , ( x ) - ! J  ~ ~,(y)K,(x,y)dy=F(x) (O~x~b)  (2.10) 
X 0  

..~[ x+y x - y  ]-K,(x,y) 
K.(x,y)= sh((x+y)/2)  + sh((x-y)/2) 

2 d i  i * ~01 (t, ~)sh~ th gt 
K,(x ,Y)=chy-~  42(chx_ch~ ) costy dt d~ 

F(x) x dx'o ~2(chx_ch~)d~ 

(2.11) 

Using the formula 

d i  Re P/x+~(ch~)sh~ d~ = chxcos'r.x (2.12) 
dxo 42(chx-ch~)  

which follows from representation 8.715 in [6] and Abel's inversion formula, expression (2.11) for the 
function Kl(x, y) can be simplified to the integral 

2chx 7 * KI(x' Y)= chy0dPl(t 'x)thlt tc°stydt (2.13) 

where the function the(x, x) = tpl(x) satisfies system (1.14) where, instead of the function co(x) of the 
form of (1.11), we have put co,(x) = cos xx on the right-hand side of this system. 

The mechanical meaning of the function 9,(x) lies in the fact that its value at the point x = b 
characterizes the coefficient for the singularity of the function of the required contact pressures ~,(x) 
at this very point. In fact, using formula (2.7), we obtain the function ¥,(x) in the form 
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Table I 

b Z x 

n = l  2 3 4 5 6 

0.1 300 302 312 324 324 325 0,050 
I 240 146 194 347 350 359 0.462 
2 94.3 75.7 127 310 344 359 0.762 

V.(x)=~C(~)~thg~P~_~(chx)d~ (2.14) 
0 

Substituting its representation (2.8), instead of the function C(x), into (2.14) and integrating by parts, 
we find that 

lim x_~b4Ch b - ch x ~ ,  (x) = 9* (b) / (2.15) 

The values of the quantity g = 103 x tp.(b)/(4(2)8) and the ratio x of the dimensional radius of the 
circular domain of contact to the radius of cross section R. for the case when v = 0.3,g.(~) - 0 (a plane 
punch, F(x)  = ~l(2)8/[r~ch(x/2)]) are given in Table 1 for different b and angles a = xn/6, which 
characterize the degree of tnmcation of the sphere. 

Calculations show that, as b increases, the value of tp. (b) can change sign, that is, the elastic medium 
of the sphere can depart from the edge of the punch. This occurs, for example, when b = 3 (the 
dimensional radius of the domain of contact is equal to 0.905R.) and n = 1, 3 and 6. 

This research was carried out with financial support from the International Science Foundation and 
the Russian Government (JIB100). 
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